详解JAVA 函数式编程

1.函数式接口

1.1概念:

java中有且只有一个抽象方法的接口。

1.2格式:

修饰符 interface 接口名称 { 
public abstract 返回值类型 方法名称(可选参数信息); 
// 其他非抽象方法内容
 }

//或者

public interface MyFunctionalInterface { 
void myMethod();
 }

1.3@FunctionalInterface注解:

与 @Override 注解的作用类似,Java 8中专门为函数式接口引入了一个新的注解: @FunctionalInterface 。该注
解可用于一个接口的定义上:

@FunctionalInterface 
public interface MyFunctionalInterface { 
void myMethod(); 
}

一旦使用该注解来定义接口,编译器将会强制检查该接口是否确实有且仅有一个抽象方法,否则将会报错。需要注意的是,即使不使用该注解,只要满足函数式接口的定义,这仍然是一个函数式接口,使用起来都一样。

1.4自定义函数式接口

public class Demo09FunctionalInterface { 
// 使用自定义的函数式接口作为方法参数 
private static void doSomething(MyFunctionalInterface inter) { inter.myMethod(); // 调用自定义的函数式接口方法
}
public static void main(String[] args) { 
// 调用使用函数式接口的方法 doSomething(() ‐> System.out.println("Lambda执行啦!")); 
} }

2.函数式编程

2.1 Lambda的延迟执行

有些场景的代码执行后,结果不一定会被使用,从而造成性能浪费。而Lambda表达式是延迟执行的,这正好可以作为解决方案,提升性能。

性能浪费的日志案例

注:日志可以帮助我们快速的定位问题,记录程序运行过程中的情况,以便项目的监控和优化。
一种典型的场景就是对参数进行有条件使用,例如对日志消息进行拼接后,在满足条件的情况下进行打印输出:

public class Demo01Logger {
    private static void log(int level, String msg) {
      if (level == 1) {
        System.out.println(msg);
      }
    }

    public static void main(String[] args) {
      String msgA = "Hello";
      String msgB = "World";
      String msgC = "Java";
      log(1, msgA + msgB + msgC);
    }
  }

这段代码存在问题:无论级别是否满足要求,作为 log 方法的第二个参数,三个字符串一定会首先被拼接并传入方法内,然后才会进行级别判断。如果级别不符合要求,那么字符串的拼接操作就白做了,存在性能浪费。

备注:

SLF4J是应用非常广泛的日志框架,它在记录日志时为了解决这种性能浪费的问题,并不推荐首先进行字符串的拼接,而是将字符串的若干部分作为可变参数传入方法中,仅在日志级别满足要求的情况下才会进行字符串拼接。

例如: LOGGER.debug("变量{}的取值为{}。", "os", "macOS") ,其中的大括号 {} 为占位符。
如果满足日志级别要求,则会将“os”和“macOS”两个字符串依次拼接到大括号的位置;否则不会进行字符串拼接。这也是一种可行解决方案,但Lambda可以做到更好。

体验Lambda的更优写法

使用Lambda必然需要一个函数式接口:

  @FunctionalInterface
  public interface MessageBuilder {
    String buildMessage();
  }
public class Demo02LoggerLambda {
    private static void log(int level, MessageBuilder builder) {
      if (level == 1) {
        System.out.println(builder.buildMessage());
      }
    }
    public static void main(String[] args) {
      String msgA = "Hello";
      String msgB = "World";
      String msgC = "Java";
      log(1, () ‐ > msgA + msgB + msgC );
    }
  }

这样一来,只有当级别满足要求的时候,才会进行三个字符串的拼接;否则三个字符串将不会进行拼接。

证明Lambda的延迟

下面的代码可以通过结果进行验证

public class Demo03LoggerDelay {
    private static void log(int level, MessageBuilder builder) {
      if (level == 1) {
        System.out.println(builder.buildMessage());
      }
    }

    public static void main(String[] args) {
      String msgA = "Hello";
      String msgB = "World";
      String msgC = "Java";
      log(2, () ‐ > {System.out.println("Lambda执行!"); return msgA + msgB + msgC; });
    }
  }

从结果中可以看出,在不符合级别要求的情况下,Lambda将不会执行。从而达到节省性能的效果。
扩展:实际上使用内部类也可以达到同样的效果,只是将代码操作延迟到了另外一个对象当中通过调用方法
来完成。而是否调用其所在方法是在条件判断之后才执行的。

2.2 使用Lambda作为参数和返回值

如果抛开实现原理不说,Java中的Lambda表达式可以被当作是匿名内部类的替代品。如果方法的参数是一个函数式接口类型,那么就可以使用Lambda表达式进行替代。使用Lambda表达式作为方法参数,其实就是使用函数式接口作为方法参数。

例如 java.lang.Runnable 接口就是一个函数式接口,假设有一个 startThread 方法使用该接口作为参数,那么就可以使Lambda进行传参。这种情况其实和 Thread 类的构造方法参数为 Runnable 没有本质区别。

public class Demo04Runnable {
    private static void startThread(Runnable task) {
      new Thread(task).start();
    }

    public static void main(String[] args) {
      startThread(() ‐ > System.out.println("线程任务执行!"));
    }
  }

类似地,如果一个方法的返回值类型是一个函数式接口,那么就可以直接返回一个Lambda表达式。当需要通过一个方法来获取一个 java.util.Comparator 接口类型的对象作为排序器时,就可以调该方法获取。

import java.util.Arrays;
  import java.util.Comparator;

  public class Demo06Comparator {
    private static Comparator<String> newComparator() {
      return (a,b) ‐>b.length() ‐a.length();
    }

    public static void main(String[] args) {
      String[] array = {"abc", "ab", "abcd"};
      System.out.println(Arrays.toString(array));
      Arrays.sort(array, newComparator());
      System.out.println(Arrays.toString(array));
    }
  }

其中直接return一个Lambda表达式即可。

3.常用函数式接口

JDK提供了大量常用的函数式接口以丰富Lambda的典型使用场景,它们主要在 java.util.function 包中被提供。

下面是最简单的几个接口及使用示例。

3.1 Supplier接口(求数组元素最大值)

java.util.function.Supplier<T> 接口仅包含一个无参的方法: T get() 。用来获取一个泛型参数指定类型的对象数据。由于这是一个函数式接口,这也就意味着对应的Lambda表达式需要“对外提供”一个符合泛型类型的对象数据。

求数组元素最大值

使用 Supplier 接口作为方法参数类型,通过Lambda表达式求出int数组中的最大值。提示:接口的泛型请使用java.lang.Integer 类。

public class Demo02Test {
    //定一个方法,方法的参数传递Supplier,泛型使用Integer 
    public static int getMax(Supplier<Integer> sup) {
      return sup.get();
    }

    public static void main(String[] args) {
      int arr[] = {2, 3, 4, 52, 333, 23}; //调用getMax方法,参数传递Lambda 
      int maxNum = getMax(()‐ > {
      //计算数组的最大值 
      int max = arr[0];
      for (int i : arr) {
        if (i > max) {
          max = i;
        }
      }
      return max; });
      System.out.println(maxNum);
    }
  }

3.2 Consumer接口

java.util.function.Consumer<T> 接口则正好与Supplier接口相反,它不是生产一个数据,而是消费一个数据,其数据类型由泛型决定。

抽象方法:accept

Consumer 接

import java.util.function.Consumer;

  public class Demo09Consumer {
    private static void consumeString(Consumer<String> function) {
      function.accept("Hello");
    }

    public static void main(String[] args) {
      consumeString(s ‐ > System.out.println(s));
    }
  }

默认方法:andThen

如果一个方法的参数和返回值全都是 Consumer 类型,那么就可以实现效果:消费数据的时候,首先做一个操作,然后再做一个操作,实现组合。而这个方法就是 Consumer 接口中的default方法 andThen 。下面是JDK的源代码:口中包含抽象方法 void accept(T t) ,意为消费一个指定泛型的数据。基本使用如:

格式化打印信息

下面的字符串数组当中存有多条信息,请按照格式“ 姓名:XX。性别:XX。 ”的格式将信息打印出来。要求将打印姓名的动作作为第一个 Consumer 接口的Lambda实例,将打印性别的动作作为第二个 Consumer 接口的Lambda实例,将两Consumer 接口按照顺序“拼接”到一起。

import java.util.function.Consumer;

  public class DemoConsumer {
    public static void main(String[] args) {
      String[] array = {"迪丽热巴,女", "古力娜扎,女", "马尔扎哈,男"};
      printInfo(s ‐ > System.out.print("姓名:" + s.split(",")[0]), s ‐>
      System.out.println("。性别:" + s.split(",")[1] + "。"), array);
    }

    private static void printInfo(Consumer<String> one, Consumer<String> two, String[] array) {
      for (String info : array) {
        one.andThen(two).accept(info); // 姓名:迪丽热巴。性别:女。
      }
    }
  }

3.3 Predicate接口

有时候我们需要对某种类型的数据进行判断,从而得到一个boolean值结果。这时可以使用java.util.function.Predicate<T> 接口。

抽象方法:test

Predicate 接口中包含一个抽象方法: boolean test(T t) 。用于条件判断的场景:

import java.util.function.Predicate;

  public class Demo15PredicateTest {
    private static void method(Predicate<String> predicate) {
      boolean veryLong = predicate.test("HelloWorld");
      System.out.println("字符串很长吗:" + veryLong);
    }

    public static void main(String[] args) {
      method(s ‐ > s.length() > 5);
    }
  }

默认方法:and

既然是条件判断,就会存在与、或、非三种常见的逻辑关系。其中将两个 Predicate 条件使用“与”逻辑连接起来实现“并且”的效果时,可以使用default方法 and 。其JDK源码为

import java.util.function.Predicate;

  public class Demo16PredicateAnd {
    private static void method(Predicate<String> one, Predicate<String> two) {
      boolean isValid = one.and(two).test("Helloworld");
      System.out.println("字符串符合要求吗:" + isValid);
    }

    public static void main(String[] args) {
      method(s ‐ > s.contains("H"), s ‐>s.contains("W"));
    }
  }

默认方法:or

与 and 的“与”类似,默认方法 or 实现逻辑关系中的“或”。JDK源码为:

import java.util.function.Predicate;

  public class Demo16PredicateAnd {
    private static void method(Predicate<String> one, Predicate<String> two) {
      boolean isValid = one.or(two).test("Helloworld");
      System.out.println("字符串符合要求吗:" + isValid);
    }

    public static void main(String[] args) {
      method(s ‐ > s.contains("H"), s ‐>s.contains("W"));
    }
  }

默认方法:negate

“与”、“或”已经了解了,剩下的“非”(取反)也会简单。默认方法 negate 的JDK源代码为:从实现中很容易看出,它是执行了test方法之后,对结果boolean值进行“!”取反而已。一定要在 test 方法调用之前调用 negate 方法,正如 and 和 or 方法一样:

import java.util.function.Predicate;

  public class Demo17PredicateNegate {
    private static void method(Predicate<String> predicate) {
      boolean veryLong = predicate.negate().test("HelloWorld");
      System.out.println("字符串很长吗:" + veryLong);
    }

    public static void main(String[] args) {
      method(s ‐ > s.length() < 5);
    }
  }

信息筛选

数组当中有多条“姓名+性别”的信息如下,请通过 Predicate 接口的拼装将符合要求的字符串筛选到集合ArrayList 中,需要同时满足两个条件:

1. 必须为女生;

2. 姓名为4个字。

import java.util.ArrayList; import java.util.List; import java.util.function.Predicate;

  public class DemoPredicate {
    public static void main(String[] args) {
      String[] array = {"迪丽热巴,女", "古力娜扎,女", "马尔扎哈,男", "赵丽颖,女"};
      List<String> list = filter(array, s ‐ > "女".equals(s.split(",")[1]), s ‐>s.split(",")[0].length() == 4);
      System.out.println(list);
    }

    private static List<String> filter(String[] array, Predicate<String> one, Predicate<String> two) {
      List<String> list = new ArrayList<>();
      for (String info : array) {
        if (one.and(two).test(info)) {
          list.add(info);
        }
      }
      return list;
    }
  }

3.4 Function接口

java.util.function.Function<T,R> 接口用来根据一个类型的数据得到另一个类型的数据,前者称为前置条件,后者称为后置条件。

抽象方法:apply

Function 接口中最主要的抽象方法为: R apply(T t) ,根据类型T的参数获取类型R的结果。使用的场景例如:将 String 类型转换为 Integer 类型。

import java.util.function.Function;

  public class Demo11FunctionApply {
    private static void method(Function<String, Integer> function) {
      int num = function.apply("10");
      System.out.println(num + 20);
    }

    public static void main(String[] args) {
      method(s ‐ > Integer.parseInt(s));
    }
  }

默认方法:andThen

Function 接口中有一个默认的 andThen 方法,用来进行组合操作。

练习:自定义函数模型拼接

题目
请使用 Function 进行函数模型的拼接,按照顺序需要执行的多个函数操作为:

String str = "赵丽颖,20";

1. 将字符串截取数字年龄部分,得到字符串;
2. 将上一步的字符串转换成为int类型的数字;
3. 将上一步的int数字累加100,得到结果int数字。

import java.util.function.Function;

  public class DemoFunction {
    public static void main(String[] args) {
      String str = "赵丽颖,20";
      int age = getAgeNum(str, s ‐ > s.split(",")[1], s ‐>Integer.parseInt(s), n ‐>n += 100);
      System.out.println(age);
    }

    private static int getAgeNum(String str, Function<String, String> one, Function<String, Integer> two, Function<Integer, Integer> three) {
      return one.andThen(two).andThen(three).apply(str);
    }
  }

以上就是详解JAVA 函数式编程的详细内容,更多关于JAVA 函数式编程的资料请关注呐喊教程其它相关文章!

声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#nhooo.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。