给定一个N个整数的数组arr []。任务是首先找到最大子数组总和,然后从子数组中移除最多一个元素。最多删除一个元素,以使删除后的最大和最大。
如果给定的输入数组为{1,2,3,-2,3},则最大子数组总和为{2,3,-2,3}。然后我们可以删除-2。删除剩余数组后-
{1, 2, 3, 3} with sum 9 which is maximum.
1. Use Kadane’s algorithm to find the maximum subarray sum. 2. Once the sum has beens find, re-apply Kadane’s algorithm to find the maximum sum again with some minor changes)
#include <bits/stdc++.h> using namespace std; int getMaxSubarraySum(int *arr, int n){ int max = INT_MIN; int currentMax = 0; for (int i = 0; i < n; ++i) { currentMax = currentMax + arr[i]; if (max < currentMax) { max = currentMax; } if (currentMax < 0) { currentMax = 0; } } return max; } int getMaxSum(int *arr, int n){ int cnt = 0; int minVal = INT_MAX; int minSubarr = INT_MAX; int sum = getMaxSubarraySum(arr, n); int max = INT_MIN; int currentMax = 0; for (int i = 0; i < n; ++i) { currentMax = currentMax + arr[i]; ++cnt; minSubarr = min(arr[i], minSubarr); if (sum == currentMax) { if (cnt == 1) { minVal = min(minVal, 0); } else { minVal = min(minVal, minSubarr); } } if (currentMax < 0) { currentMax = 0; cnt = 0; minSubarr = INT_MAX; } } return sum - minVal; } int main(){ int arr[] = {1, 2, 3, -2, 3}; int n = sizeof(arr) / sizeof(arr[0]); cout << "Maximum sum = " << getMaxSum(arr, n) << endl; return 0; }
输出结果
当您编译并执行上述程序时。它生成以下输出-
Maximum sum = 9